New ISTAT “microzones” layer: a new way to read land cover statistics

Stefano Mugnoli, Fabio Lipizzi, Antonella Esposto

Abstract


The aim of this paper is to describe the procedures used to integrate geographic datasets in order to produce new ISTAT “microzones” layer, an upgrade of the 2011 Census cartography. The above is an experiment based on the management and fusion between Land Cover data concerning hinterland areas (i.e. cadastral data) and maps produced by regional or local authorities. All the activities are in progress and under assessment. Integration and elaboration are carried out using a number of ArcGIS 10.4.1 tools. The main achievements so far have been to produce integrated geographic datasets and to link microzones land cover and use legend with LUCAS (Land Use/Cover Area frame Survey) one. Other very useful pilot data are represented by four band high resolution aerial images; calculating simple radiometric indices (SAVI, ENDVI), in fact, it can be possible to improve the estimates of vegetation cover, especially in urban areas. All the information collected can be a very useful way of improving the quality of land cover/use statistical data, although the integration of data that came from different sources can involve an accuracy loss and a generalization of the final product; the activities will be extended to the entire Italian territory to enhance the value of the input data. Future work will be planned to automate all data processing and integration with other geographic database sources, in order to increase data details and to reduce the generalization of the same.

References


Chiocchini R. and Mugnoli S., “Land Cover and Census integration geographic datasets to realize a statistics synthetic map”, Proceedings of European Forum for Geography and Statistics (Krakow, 22-24 October 2014), European Forum for Geography and Statistics Conference, 2014,

https://www.efgs.info/conferences/efgs/2014-krakow/.

Della Rocca A.B., Pignatti S., Mugnoli S. and Bianco P.M., “La Carta della Vegetazione della Tenuta di Castelporziano”, in Accademia Nazionale delle Scienze detta dei XL (dei Quaranta) (Ed.), Il Sistema Ambientale della Tenuta di Castelporziano, Scritti e Documenti XXVI, Rome, 2001, pp. 709-747.

Dobermann A., Ping J.L., Simbahan G.C. and Adamchuk V.I., “Processing of yield map data for delineating yield zones”, in Stafford J. and Werner A. (Eds.), Precision Agriculture, Wageningen, Wageningen Academic Publisher, 2003, pp. 177-186.

European Environment Agency, Urban Sprawl in Europe – the ignored challenge, EEAreport n. 10/2006.

Foody G.M., “Status of land cover classification accuracy assessment”, Remote sensing of environment, 80, 1, 2002, pp. 185-201.

Gallego F.J., “Remote sensing and land cover area estimation”, International Journal of Remote Sensing, 25, 15, 2004, pp. 3019-3047.

Huete A.R., “A soil adjusted vegetation index”, Remote sensing of environment, 25, 3, 1988, pp. 295-309.

Huete A., Didan K., Miura T., Rodriguez E.P., Gao X. and Ferreira L.G., “Overview of the radiometric and biophysical performance of the MODIS vegetation indices”, Remote Sensing of Environment, 83, 2002, pp. 195-213.

Kemp K., Encyclopedia of Geographic Information Science, SAGE Publications, 2008.

Kienast-Brown S. and Boettinger J.L., “Applying the Optimum Index Factor to multiple data types in soil survey”, in Moore A.C., Kienast-Brown S., Boettinger J.L. and Hartemink A. (Eds.), Digital Soil mapping: Bridging research, Environmental Application and Operation, Berlin, Springer 2010, pp. 385-398.

Lipizzi F., Innovazioni di processo e di prodotto nelle fasi di aggiornamento delle basi territoriali 2010-2011, ISTAT Working Papers, n. 2/2013.

Lipizzi F. and Mugnoli S., “Le statistiche agricole verso il Censimento del 2010: valutazione e prospettive”, Proceedings of the conference “Le Statistiche agricole verso il Censimento del 2010: valutazioni e prospettive” (Cassino, Università di Cassino, 26-27 October 2006), Cassino, 2010, pp. 381-394.

Lombardo G., Esposto A., Minguzzi R. and Mugnoli S., “La CSS ISTAT un nuovo strumento per le statistiche territoriali”, Geomedia, XXI, 2, 2017, pp. 26-30.

Marchetti M., “Metodologie per una cartografia di uso del suolo multilivello e multiscala: analisi e sperimentazione applicativa”,

Documenti del territorio, 49, 2002, pp. 33-51.

McRoberts R.E., Wendt D.G., Nelson M.D. and Hansen M.H., “Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates”, Remote Sensing of Environment, 81, 1, 2002, pp. 36-44.

Mróz M. and Sobieraj A., “Comparison of several vegetation indices calculated on the basis of a seasonal spot xs time series, and their suitability for land cover and agricultural crop identification”, Technical Sciences, 7, 2004, pp. 39-66.

Mugnoli S., Chiocchini R., Cruciani S., Esposto A. and Lipizzi F., “Integrazione di dataset geografici di copertura del Suolo e Censuari per la realizzazione di una mappa statistica sintetica”, Proceedings of the XV National Conference ASITA 2011 (Colorno, 15-18 November 2011), Parma, 2011, pp. 1633-1640.

Xue J. and Boafeng S., “Significant Remote sensing Vegetation Indices: a Review of Developments and Applications”, Journal of Sensors, 2017, pp. 1-17.


Full Text: PDF

Refbacks

  • There are currently no refbacks.




Sponsoring Organizations:


Sapienza Università di Roma University of Helsinki Università di Torino Western Michigan University

EUGEOIRPPS


With the support of:


ESA

Publisher:
Edizioni Nuova Cultura

 

Online ISSN: 2281 - 5694 Print ISSN: 2281 – 4310 © 2013 - Edizioni Nuova Cultura