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Abstract  

In this study we analyze how the spatial resolution of three satellite images affects estimates of fuelwood 

availability in a region located in Southern India. For this purpose, we rely on satellite imagery, ground-

truthing through GNSS Data Logger, and data from productivity value records. Preliminary findings 

suggest that higher-resolution satellite imagery significantly improves the accuracy of fuelwood source 

estimations, revealing a complex mosaic of available biomass often overlooked by coarser map scales of 

analysis. By incorporating localized data on fuelwood collection patterns and the spatial distribution of 

biomass, we aim to enhance predictive models that can more accurately forecast fuelwood availability. In 

didactic terms, we consider this analysis to be a good example that provides a comprehensive 

understanding of how the characteristics of satellite imagery can influence the cartographic products that 

are the basis for decision making. It also has significant potential to be utilized online as a practical exercise 

in GIS and remote sensing courses, allowing students to practically analyze a real-world case, thereby 

enhancing meaningful learning. 
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1. Introduction 

One major flaw in the so-called fuelwood gap 

theory of the 70s’ (Eckholm, 1975) was an 

underestimation of woody biomass resources, 

mainly because non-forests biomass and the 

vegetation’s response to collection and 

harvesting strategies were not considered in 
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global and regional estimates1 (Pandey, 2002; 

Bensel, 2008; Rüger et al., 2008; He et al., 2009; 

Jagger and Shively, 2014). 

Since decades now it is known that wood for 

cooking and heating comes from virtually 

everywhere in the landscape, such as forests, 

woodlands, agroforestry systems, wastelands, 

scattered trees in agricultural areas or on the 

edges of roads, and family orchards; but also 

from within urban environments, industrial 

facilities producing biomass residues, and even 

along the shores of water bodies (RWEDP, 

1997; Pandey, 2002; Rüger et al., 2008). 

From a remote sensing perspective aimed at 

mapping fuelwood availability across broad areas, 

all these fuelwood sources are highly diverse in 

terms of spatial extent, texture, and patchiness. In 

consequence, both the spatial resolution (size of 

each pixel on the ground) and the classification 

method should influence how accurately fuelwood 

sources can be mapped. While sub-meter resolution 

imagery can in principle detect very small sources 

(e.g. a few bushes by a river), it presents many 

technical challenges when covering large areas such 

as entire countries. A question not yet resolved 

arise: How to balance between mapping large areas 

while accounting for pulverized fuelwood sources 

not detectable by medium to low resolution sensors. 

In other words, how sensitive are supply-demand 

estimations to fuelwood supply maps produced at 

varying spatial resolutions? 

Previous studies have analyzed how spatial 

resolution can influence estimates of woody 

canopy cover and deforestation and forest 

degradation (D&D) (Ponzoni et al., 2002; de 

Wasseige and Defourny, 2004; Asner et al., 

2005; Harris et al., 2012; Souza et al., 2013; 

Fisher et al., 2017; Shafeian et al., 2021). 

 
1 Wood can be considered a conditionally renewable 

resource because trees grow naturally in many 

environmental conditions. If wood is harvested at or 

below the rate at which it naturally regenerates, then 

harvesting is sustainable. However, if more wood is 

harvested than the landscape can replace, as is often 

the case in low- and middle-income countries (where 

people rely heavily on fuelwood and charcoal), 

harvesting is not sustainable and tree cover will 

decline over time. This causes landscape degradation 

and may also contribute to long-term deforestation. 

Furthermore, a few studies ntion fuelwood 

extraction and its potential relationship with 

D&D, but they all fall short on explicitly 

addressing the question of how spatial resolution 

could eventually tilt supply estimations 

significantly (Pandey, 2002; Shafeian et al., 

2021).  

In this study, we estimated fuelwood supplies 

within a 24,779 ha area in central Karnataka, 

India by means of visual interpretation of 

satellite imagery at three different resolutions, 

with and without counting Trees Outside Forest 

(TOFs); and later related woody area with 

biomass stocks from the literature. We used 

georeferenced tracks from a sample of fuelwood 

collectors in three villages to validate the actual 

Land Use and Land Cover (LULC) class people 

were visiting for collecting fuelwood during a 

three-month survey conducted from December 

2013 to April 2014. 

In addition to the above, this work has a 

second objective: to make new contributions to 

the field of situated learning in geography and 

GIS with proposals that promote active 

knowledge and practical application of 

theoretical concepts (sensu Ridha et al., 2020). 

In this sense, this work is a new experience in 

the field of photointerpretation with satellite 

images, a useful tool both for geographic 

analysis (spatiotemporal dynamics, natural risk 

analysis, climate change) and for the generation 

of thematic maps (land cover and uses, 

geomorphology, geology, landscape) (Lillesand 

et al., 2015).  

Aerial photointerpretation is an essential exercise 

in geography programs at the university level. This 

study is designed to be effectively implemented as a 

practical exercise within the context of GIS or 

Remote Sensing topics, seeking the acquisition of 

analytical skills, practical and applied learning, and 

the development of relevant technological 

competencies in the professional field (sensu Sinton, 

2009; Schulze et al., 2013). 

 

2. Material and methods 

2.1 Study area 

The study area is a rectangular cutout of 

24,778 ha located between the coordinates 15° 

37’ 54.66’’N, 76° 16’ 08.53’’E and 15° 31’ 

25.40’’N, 76° 27’ 48.88’’E within Koppal 
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district, in the state of Karnataka in southern 

India (Figure 1). The average altitude is about 

470 MSL, the climate is semi-arid with a warm 

summer, an annual precipitation of 571 mm, and 

maximum and minimum temperatures of 45 °C 

and 16 °C, respectively.  

The topography is moderately flat among 

shallow valleys and granitic hills positioned 

along a northeast-southeast line and hosting a 

variety of shrubs usually collected as fuelwood. 

Koppal’s main waterbody is the Tugabhadra 

River, a tributary of the Krishna River along its 

right banks, corresponding to the basin of the 

same name (GWIB, 2008; Government of India, 

2011).   

The area was chosen because is a good 

representation of places that are classified as 

fuelwood hot spots (i.e. deficit areas) because 

they   host a large and relatively dense 

population using fuelwood, over a highly 

fragmented landscape with most fuelwood 

sources represented by scattered trees and shrubs 

difficult to detect by moderate and low spatial 

resolution satellite images; which are frequently 

used in country-wide/national level assessments 

(Ramachandra, 2010; Drigo et al., 2014; Bailis 

et al., 2015).  

The main supply source of fuelwood comes 

from thorny shrubs, which are characteristic of 

arid or semi-arid climates (FCN, 2012), where 

the predominant species is Prosopis juliflora, a 

shrub that, because it is highly adaptable to arid 

environments, has come to be considered an 

invasive species (Walter and Armstrong, 2014; 

Edrisi et al., 2020).  

It is known locally as Bellary jali, and it was 

introduced in India in the past century as part of 

a strategy to reforest and combat soil erosion. 

This tree grows quickly, is tolerant of salt and 

drought, and − because it adapts easily to dry 

climates −is considered to be a weed because it 

spreads rapidly, mainly in pasture land, crop 

areas, and along river banks (Shanwad et al., 

2015). Although it is attributed with different 

negative impacts on native biodiversity, it is also 

widely used to restore degraded areas in addition 

to having high potential as fuelwood, charcoal, 

wood and syrup due to its high calorific value 

(Oduor and Githiomi, 2013; Walter and 

Armstrong, 2014; Shanwad et al., 2015). 

2.2 Satellite image acquisition and 

interpretation of land use maps at different 

geographical scales 

Free images with geometric corrections were 

downloaded from the remote Landsat and 

Sentinel-2 sensors, offering resolutions of 30 

meters and 10 meters, respectively. 

A four-band composition was used for these 

sensors (table 1), allowing for the creation of 

false-color composites to highlight distinctive 

features of land cover and use. The selection of 

different scenes was based on visual quality, 

with less than 10% cloud cover and falling 

within the appropriate seasonal range. 

Additionally, a high-resolution image with a 30 

cm resolution was downloaded from the SAS 

PLANET2.  

The high-resolution capability of this image 

was sufficient to visually detect (at a detailed 

spatial scale3) different geographic features such 

as buildings, trees, water bodies, etc., and easily 

perform on-screen digitizing in GIS to prepare 

the land use map. 

The map scales chosen for photointerpreting 

the LULC were defined based on the spatial 

resolution potential of each image, as shown in 

Table 1. The interpretation scales were 1:60,000 

for Landsat and 1:20,000 for Sentinel.  

The Google earth image enabled mapping at 

a scale of 1:5,000 and estimating scattered trees 

in agricultural areas at a scale of 1:1,000 (see 

section 2.4 Trees Outside Forests). 

The method used to photo interpret the 

images was, the Food and Agriculture 

Organization, visual interpretation method was 

applied (FAO, 1996). Meanwhile, applying the 

photo interpretation method requires assigning a 

minimum mapping unit (MMU) that helps 

provide coherence to the cartography, which is 

why we applied the one suggested by Priego and 

Bocco (2011) (4 X 4 mm) because it guarantees 

the cartographic functionality and the correct 

reading of the map (Franch-Pardo et al., 2017). 

 

 
2 Software that allows users to view and download 

high-resolution satellite photos. 
3 When we mention the scale we refer to the measure 

of the amount of reduction that a mapped feature has 

with respect to its real counterpart on the ground. 
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Figure 1. Study area in Koppal district, Karnataka, India. Authors’ elaboration. 

 

 
 

Table 1. Data from the satellite images used for this study. Authors’ elaboration. 
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2.3 Reliability analysis of the land cover 

cartography 

To assess the quality of the classification, a 

confusion matrix was developed, consisting of a 

two-dimensional table that allows for assessing 

the quality of each category by calculating errors 

of omission and commission (Salvador et al., 

1996).   

The rows show the “true-terrain” reference 

values while the columns display the values 

obtained from the classification. The errors to be 

identified are of omission or commission, and 

the Kappa index (KI) was applied to assess the 

classification’s precision (concordance), which 

accounts for the contribution of chance in the 

map’s reliability (Mas et al., 2003).  

a) Sampling

The thematic map’s reliability analysis 

consisted of assessing the projected information 

on the cartography, which was contrasted with 

other, more reliable information sources. 

Overall, it is based on a sampling of verification 

sites that are classified based on field 

observations or by analyzing satellite images 

with higher resolution than those used to 

produce the map (Mas et al., 2003). A random 

stratified sample was taken, and 60 % of the 

polygons that comprise the LULC map selected 

for each category. 

b) Validation of verification sites

The Landsat and Sentinel validation was 

done through an image with higher spatial 

resolution, while a more detailed a map scale 

was applied for Google earth image than the one 

used to develop the LULC map. 

c) Confusion matrix

The confusion matrix allowed for identifying 

the omission and commission errors, where the 

former are the elements that do not appear in the 

category that they belong to because they were 

erroneously included in another one, while the 

commission errors are the elements that appear 

in a class that they do not belong to.  

2.4 Estimation of trees outside forests 

For this exercise, a grid with square modules 

of 1 hectare was designed, which was overlaid 

on the Google earth image (only the agricultural 

area was considered). Then, a random sampling 

was conducted on the grid to randomly select 

130 cells. Within these cells, trees outside 

forests (TOFs) were identified and digitized. 

This process allowed for extrapolation to 

estimate the coverage of scattered trees in 

agricultural land use that were not detected in 

Landsat and Sentinel images. 

2.5 GNSS Data Logger tracking of fuelwood 

collection sites for cross-validation 

Between December 2013 and April 2014, 30 

GNSS Data Logger4 devices were distributed to 

residents of the Koppal district, specifically in 

the towns of Nerlotti, Upalapur, and 

Chikkawadrakal, who regularly collect 

fuelwood. These devices were paired with a 

custom-developed Android app designed to 

collect, process, contextualize, and analyze 

mobility patterns and time allocation. Voluntary 

participants carried the devices with them 

throughout their daily activities to help identify 

fuelwood harvest sites.  

Every 3 to 5 days, the recorded tracks from 

the devices were uploaded to a widescreen tablet 

and displayed over a Google Maps satellite 

image. A brief multiple-choice interview was 

then conducted to identify what the person 

wearing the device was doing at various times 

and locations along the recorded track. Areas 

where participants engaged in activities, such as 

collecting firewood, grazing livestock, or 

working in the fields, were saved as polygons 

drawn on the screen by the interviewer. 

Depending on internet connectivity, the data was 

either stored on the tablet or sent to the cloud for 

remote analysis in near real-time. Spatial and 

temporal descriptive statistics of the tracks and 

participants’ activities were calculated 

automatically.  

4 Brand and model of devices: Columbus v990 GNSS 

trackers with point positioning. 



10 Lidia Salas-Canela, Ivan Franch-Pardo, Yan Gao, Tuyeni Mwampamba, Robert Bailis, Hisham Zerriffi, Adrian Ghilardi 

 

Copyright© Nuova Cultura                                                                                         Italian Association of Geography Teachers 

Based on this monitoring, the information 

was processed using GIS, and the collection 

zones were spatially delineated in collaboration 

with the GNSS Data Logger users. This 

resulting data provided cross-validation between 

the collection zones identified in the field and 

the land use/land cover (LULC) maps.  

 

2.6 Fuelwood availability 

To estimate the availability of fuelwood in 

the area of study, documentary sources were 

reviewed, identifying the productivity values of 

the Prossopis juliflora species. Due to the 

scarcity of these types of data in the search, it 

was limited to India, while productivity data 

from other LULCs were taken from secondary 

sources from other parts of the world.  

 

3. Results 

3.1 Spatial analysis of land uses and land 
covers as a biomass source 

In the Landsat image, eight categories of land 

uses and land covers were identified, while in 

the Sentinel 9 and Google earth images, ten 

classes were identified. These were the recorded 

categories: agriculture, human settlements, 

waterbodies, shrublands (dense and open), tree 

plantations (only in Landsat and Sentinel), 

riparian vegetation (dense and open), 

waterlogged areas, and stony waste (only in 

Sentinel).  

In the area of study, agriculture is the most 

represented category, while the rest of the 

categories are minimally represented. The 

resolution allowed for establishing different 

nominal categories; that is, the number of 

classes varied depending on the resolution. In 

this case, Google earth image had greater detail, 

which resulted in a higher number of class 

(Table 2). 

All the natural vegetation that is not 

associated with waterbodies and that is primarily 

located in sloped areas was classified as 

shrubland, whereas we identified riparian 

vegetation next to riverbanks and in low areas. 

Table 2 shows the surface in hectares along with 

the percentage of each of the categories 

identified in each sensor.  

 

3.2 Reliability analysis of the land cover 

cartography 

The Landsat sensor presented an overall 

reliability (OR) of 78.1 % (Table 3) and a Kappa 

index with a nearly perfect concordance of 

between 0.81 and 100 in the dense riparian 

vegetation, dense shrubland, human settlements, 

open riparian vegetation, and open shrubland. 

Substantial concordance of 0.7 was present in 

the waterbodies, while there was a moderate 

concordance of 0.60 in agriculture. Finally, there 

was an insignificant concordance of 0.25 in 

zones classified as waterlogged areas.  

Figure 2 shows the LULC cartography of the 

study area on the left, which was developed 

based on the different sensors, while the 

resolution’s influence on the fragmentation of 

the landscape is exemplified on the right through 

zoom-in windows. That is, as the resolution and 

scale increased, patches of vegetation emerged 

in agricultural areas. 

In the cartography derived from the Sentinel 

sensor, the overall reliability was 88.5 % and the 

Kappa index indicated that nine of the ten 

categories had a concordance value within the 

range of 0.81-1.00, which means a nearly perfect 

concordance strength, while the category 

classified as open shrubland had a value of 0.60, 

that is, a moderate concordance. 

In the Google earth image, the overall 

reliability was 96 %, and all the categories 

classified with this sensor had a concordance 

value within the 0.88-1.00 range.  

In broad terms, this means that, of the three 

sensors used to classify the land uses and land 

covers, the Google earth image is more reliable 

and, although the results also depend on the 

classification method, the high resolution 

associated with the visual method makes it 

possible to identify different elements such as 

patches of trees outside the forest, which are 

often not perceived in other scales of analysis.  
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3.3 TOF estimate 

The high spatial resolution of the SAS 

PLANET images enabled photointerpretation of 

certain areas at a 1:1,000 scale, allowing for the 

identification of scattered trees within the 

agricultural cover.  The total surface of the 

scattered TOF in the sample area was 11.24 ha. 

Based on this data, an inference for all 

agricultural areas was made, in which a total of 

1680 ha of shrubland was estimated, which had 

not been recorded or counted in other images 

with smaller resolutions. 

The result of this exercise was applied to the 

LULC analysis on a map scale of 1:5,000, that 

is, 1680 ha were subtracted from the agricultural 

surface and this same value was added to the 

surface cataloged as dense shrubland. 

 

 

 

 

 

 

 

           Table 2. Classification of the land uses and land covers per sensor. Authors’ elaboration. 

 

    

          Table 3. Reliability of the LULC cartography. Authors’ elaboration. 
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GOOGLE EARTH 
IMAGE 

 
Figure 2. Maps of land covers produced through the visual interpretation of Landsat, Sentinel, and Google earth 

images. Authors’ elaboration. 

 

 

Table 4. Relation between collection zones and land use and land cover per sensor. Authors’ elaboration. 
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Table 5. Relation between collection zones and land use and land cover per sensor. Authors’ elaboration. 

Figure 3. Collection zones based on GNSS Data Logger data and visual classification of satellite images. 
Authors’ elaboration. 
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Table 6. Maximum and minimum productivity values per LULC category. Authors’ elaboration. 

Table 7. Aboveground biomass estimates by category. Authors’ elaboration. 

3.4 Monitoring of the fuelwood collection sites 

for cross validation based on GNSS Data 

Logger 

Table 4 shows the result of the cross 

validation, where it is apparent that agriculture is 

the category that is most used to obtain 

fuelwood and that, as the spatial resolution 

increases, the number of sites in agricultural 

areas decreases.  

This means that there are patches of natural 

vegetation or scattered trees within the 

agricultural plots that are used as a source of 

fuelwood and that are not captured on coarser 

geographical scales. 

In the areas of natural vegetation that include 

shrubland and riparian vegetation, the opposite 

occurs.  

Figure 3 exemplifies the cross-validation 

results through windows. On the right, it shows 

the name and location for each example (zoom), 

and the corresponding sensor is specified along 

the top. The red polygons represent extraction 

sites from different localities superimposed on 
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each sensor’s LULC results. As seen, there is 

variation from sensor to sensor.  

The examples show that, as the spatial 

resolution increases, the LULC categories 

change and, therefore, the collection sites start to 

be associated with categories that have a greater 

presence of fuelwood (Fig. 3).  

The values reported for the Prosopis juliflora 

species for India were highly variable, 

fluctuating between 1.4 and 103.32 t/ha (Table 

5). The values reported in the three documents 

cited in table 5 were used for this study, which 

also correspond to case studies in which the 

biomass productivity of the Prosopis juliflora 

species was reported in t/ha.  

 

3.5 Biomass estimate 

a) Review of productivity data.  

Considering the previous reports, minimum 

and maximum productivity ranges were 

established for natural vegetation. The data for 

quantifying the biomass in the categories that are 

not natural vegetation are even scarcer. 

Therefore, values reported in studies from other 

parts of the world were used. In many cases, 

these data have been approximations or they 

come from unpublished field data (Ghilardi et 

al., 2007).  

Table 6 shows the minimum and maximum 

productivity values, both for natural vegetation 

and for the other categories identified in the 

study area. 

b) Aboveground biomass (AGB) estimates in 

the area of study. 

The fuelwood estimate calculated with data 

reported in the literature in relation to the LULC 

surfaces for each sensor can be seen in table 7. 

The results indicated a variation, even when 

the calculation was done with the same sensor. 

Regardless of the productivity data used to 

estimate the supply, the effect of the input used 

has a considerable weight. In this case, the 

minimum and maximum estimates were more 

similar between the Landsat and Sentinel 

images, while there were higher values in the 

Google earth images (table 7).  

 

4. Discussion 

While there are various methods for 

classifying the LULCs, in terms of availability, 

an analysis with resolutions and geographical 

scales is needed that allows for identifying the 

scattered or low-density supply sources, such as 

those located in arid or semi-arid zones where it 

is complicated to distinguish them, even with 

high resolution.  

We consider that studies based on photo and 

field interpretation with GNSS Data Logger are 

fundamental for technological advancements in 

matters of automatic LULC classification, and 

more matches will be achieved with these 

algorithms as more surfaces are covered with 

these techniques.  

As mentioned, this aspect becomes even 

more present in arid regions, because they are 

robust and effective methods in areas whose 

dimensions are manageable with a reasonable 

workload.  

While we know these methods have 

disadvantages in terms of the excessive time that 

can sometimes be invested in the classifications 

(Wang et al., 2008; Zanella et al., 2012) or the 

need to have prior knowledge of the area of 

study (Kumar et al., 2017), the geospatial 

sciences community needs these techniques, 

which tend to be effective and easy to apply.  

For example, they help us understand the 

TOF spatial behavioral patterns; their presence; 

and their patterns of location, intensity, and 

volume.  All this information is useful because it 

makes it possible to produce probabilistic 

models to spatiality mold surfaces of greater 

lengths. Having more areas where work is done 

with the LULC and TOF will allow us to 

examine the proportion, and it will create the 

possibility of producing new applied models for 

the domestic energy sector. 

Technological advances in artificial 

intelligence and big data, with the development 

of innovative machine learning, deep learning 

algorithms and cutting-edge cloud computing, 

have achieved spectacular advances in automatic 

LULC generation. However, we are far from 

guaranteeing highly reliable results as it has 

been shown that data gaps or inconsistent and 

heterogeneous data continue to occur (Zhang 
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and Li, 2022). The present research experience 

contributes to further advances in the generation 

of data with a high level of precision that can be 

used for the development of future models on 

this sector in India. 

This study showed that high resolution 

images photointerpreted a map scale of 1:1,000 

are the only way to achieve a reliable 

identification of TOF, from which we were able 

to calculate a rough estimate of the fuelwood 

supply that is not visible in other resolutions and 

scales. It is important to mention, the advantage 

of using Google earth is that it provides the 

latest satellite imagery having spatial resolution 

less than 1m. While the disadvantage is that it 

may not be possible to obtain the original 

multispectral band data and hence image 

classification using unsupervised or supervised 

techniques cannot be carried out. (Malarvizhi et 

al, 2016) 

Another factor associated with resolution and 

scale is the minimum mapping unit (MMU), 

which makes it possible to conserve areas with 

small surfaces or those that are not very 

representative in cartographic terms. In our 

experience, we have proven that the size of the 

objects and patches of Prossopis juliflora 

fluctuate between 11 m2 and 2600 m2, elements 

that are imperceptible in terms of the MMU. In 

this case, determining the MMU is 

counterproductive because it contributes to 

underestimating the biomass, especially when 

there are high MMU values. Therefore, using 

small MMU values is recommended, with the 

aim of conserving most of the polygons, which 

are the base for quantifying the potential 

biomass for domestic use.  

It is important to mention that the exploration 

of different approaches to identify and quantify 

TOF, on different geographical scales and with 

different sensors, is a trending research topic 

when it comes to using other tools such as 

LIDAR or UAV (Dai et al., 2018; Gomes et al., 

2018; Aubry-Kientz et al., 2019) but up until 

now this exercise has proven to be complex, and 

there is still no agreement about best practices 

(Aubry-Kientz et al., 2019).  

Regarding the reliability of the results, we 

had an overall reliability of 78.1 % for Landsat, 

88.5 % for Sentinel, and 96 % for Google earth 

image. In general, the reliability of thematic 

maps has been accepted without questioning, but 

we must keep in mind that all of them have a 

degree of uncertainty, which mostly depends on 

the quality of the input and the methodology 

adopted for their development (Mas et al., 

2003).  

During the process of this study, we used 

GNSS Data Logger devices that were provided 

to the area locals who gather fuelwood. While 

these tools are quite useful and have been 

employed in various scientific studies, in terms 

of fuelwood, their applications have been rather 

basic. For example, they have been employed to 

identify the locations of trees used for fuelwood 

(Ramachandra, 2010) or to locate the areas 

impacted by their use (Shaheem et al., 2016). 

In this study, applying the GNSS Data 

Logger devices reinforced the evidence about 

the uncertainty that is associated with medium 

and low resolutions when identifying scattered 

fuelwood sources. The cross validation showed 

that people apparently gathered fuelwood in 

agricultural areas, but fuelwood was actually 

harvested in scattered shrubland patches in the 

agriculture matrices that the sensors did not 

capture due to their size, as previously 

mentioned. Therefore, we consider that GNSS 

PS can be incorporated into fuelwood 

availability studies to better understand the 

collection patterns. 

Finally, we compared the result of the three 

fuelwood estimates, considering the maximum 

and minimum values that were calculated based 

on the productivity data identified in the 

secondary sources. To do so, we used the 

cartography derived from each sensor as a base. 

The identified values were highly variable, even 

within the same country. This is because the 

quantity of biomass depends on factors such as 

the age of the trees and the environmental 

conditions they are found in, such as soil types, 

presence of humidity, etc. (Khanna, 2011; 

Pasiecznik et al., 2001). Moreover, productivity 

values are rare due to the scarcity of permanent 

sampling plots.  

Although Trees Outside Forest (TOFs) have 

been little recognized in the evaluations of 

natural resources in large areas (Kleinn, 2000; 

Ashutosh, 2010), a great amount of research 
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have been conducted on TOFs in terms of 

mapping and field-based fuelwood productivity 

estimates (Bellefontaine et al., 2002; 

Ramachandra, 2010; Doubrawa et al., 2013; 

Schnell et al., 2015).  

In any case, and to our knowledge, no 

consistent comparison exists between 

accounting or not for TOFs in fuelwood supply-

demand estimations; even though they can be 

the main source of woodfuel in many regions of 

the world. For example, in has been reported for 

southern India that up to 90% of the wood used 

in charcoal making comes from TOFs 

(Krishnankutty et al., 2008). No information 

could be found neither addressing sensor’s 

resolution influence when mapping non-tree 

sources of fuelwood such as bushes or post-

harvest crop residues (e.g. stalks, cobs, coconut 

shells, etc.). 

We would like to emphasize that land cover 

and land use mapping are indispensable in 

several areas. So, this work also represents a 

contribution to the field of university teaching 

with satellite images (Martínez et al., 2015). For 

example, in the study programme of some 

Bachelor’s and postgraduate degrees, they have 

courses of technology for geographic 

information with remote sensing and specific 

subjects for land covers and uses. That is the 

case of some undergraduate programs at ENES-

Morelia, UNAM like: Geography, Geohistory, 

Geosciences, Environmental Sciences, 

Agroforestry Sciences, Ecology and Information 

Technologies in Science5. Our findings, 

regarding the certainty in the classification of 

land uses and the comparison of the different 

inputs and spatial scales will allow the 

generation of teaching practices through 

photointerpretation with a higher level of 

precision in the expected results, planning and 

implementation.  

On the other hand, in the world of higher 

education, we are in the midst of developing and 

promoting online education, a trend that has 

been even more pronounced since the COVID-

19 pandemic (Rapanta et al., 2020). Universities 

 
5 https://www.enesmorelia.unam.mx/admision-

licenciaturas/   

are increasingly interested in offering virtual 

campuses with online sessions and practical 

exercises (Plutino and Polito, 2017). In this 

context, this work provides new exercises that 

use practical cases of research and landscape 

analysis in remote regions, utilizing easily 

downloadable satellite images available online, 

without the need for high-end hardware. These 

are easily accessible tools (Sensu Palmentieri, 

2022) for high-quality e-learning in geography, 

accessible to all social levels. 

By using satellite images of different 

resolutions and data collected in the field from 

locals who gather firewood, we teach students to 

question and analyze spatial data, understand the 

limitations of these data, and apply spatial 

analysis methods in a more critical and reflective 

manner on real-world issues. This approach 

enhances their understanding and critical 

thinking skills (sensu Bearman et al., 2016) for 

teaching GIS. 

 

5. Conclusion 

The results indicated that spatial resolution 

and map scales play a significant role in 

fuelwood supply studies as uncertainty factors 

because they influence the availability of this 

resource, and thus they should be considered. 

Underestimates of fuelwood appear when not all 

the sources of domestic energy are considered, 

and such is the case of scattered or low-density 

vegetation. This happens because, often, they 

cannot be captured by sensors with medium or 

low resolution. However, when these elements 

are considered, the results might be the opposite, 

which could modify the current outlook of areas 

marked as deficient.  

For studies analyzing the fuelwood supply in 

arid regions with predominating shrubland or 

agricultural land use, we recommend paying 

attention to the input data that is used to develop 

the cartographic bases. Given that areas of study 

with open and scattered vegetation have a need 

for input and methods that allow for capturing 

the different sources in detail, these data are 

fundamental for estimating the availability of 

fuelwood. 

 

https://www.enesmorelia.unam.mx/admision-licenciaturas/
https://www.enesmorelia.unam.mx/admision-licenciaturas/
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Therefore, one of the challenges we face in 

the issue of wood for domestic use is tied to an 

accurate diagnosis of its availability. 

Accordingly, we believe incorporating elements 

such as spatial resolution and analysis 

geographical scale into studies on the 

availability of fuelwood can make it possible to 

discern new outlooks among scarcely vegetated 

regions with a predominance of agriculture and 

sparse shrubland and which have been marked 

as deficient in regional and global studies. This 

is true of some regions in south Asia – such as 

the case we are presenting here – and in east 

Africa, which are cataloged as hot spots where 

most of the demand for fuelwood is considered 

to be unsustainable (Bailis et al., 2015).  Wood 

can be considered a conditionally renewable 

resource because trees grow naturally in many 

environmental conditions. If wood is harvested 

at or below the rate at which it naturally 

regenerates, then harvesting is sustainable. 

However, if more wood is harvested than the 

landscape can replace, as is often the case in 

low- and middle-income countries (where 

people rely heavily on fuelwood and charcoal), 

harvesting is not sustainable and tree cover will 

decline over time. This causes landscape 

degradation and may also contribute to long-

term deforestation. 

Despite advancements in geospatial 

technology, uncertainty about the availability of 

fuelwood in the different regions of the world 

remains. In particular, this is because the TOF 

are imperceptible in medium or low resolution. 

Consequently, the estimates of the availability of 

this resource are affected, thus underestimating 

or overestimating the biomass based on the 

spatial resolution and the interpretation method 

that was employed (Pandey, 2002; Shafeian et 

al., 2021). 

Finally, we would like to highlight that this 

work addresses relevant issues in academic areas 

where the use of geotechnologies applied to 

territorial analysis and natural resource 

management are indispensable. We consider that 

in the field of teaching-learning, this study can 

encourage students’ reflections about 

cartographic use and creation. As well, the 

application of remote sensing techniques and the 

influence of land cover and land use mapping in 

natural resource management. This paper wants 

to produce concerns in study topics associated 

with fuelwood collection patterns, fuelwood 

supply mapping, ecological impacts of biomass 

extraction, predictive models of fuelwood use, 

among others. 
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